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Recent text-to-scene generation approaches largely reduced the manual efforts required to create
3D scenes. However, their focus is either to generate a scene layout or to generate objects, and few
generate both. The generated scene layout is often simple even with LLM’s help. Moreover, the
generated scene is often inconsistent with the text input that contains non-trivial descriptions of the
shape, appearance, and spatial arrangement of the objects. We present a new paradigm of sequential
text-to-scene generation and propose a novel generative model for interactive scene creation. At the
core is a 3D Autoregressive Diffusion model 3D-ARD+-, which unifies the autoregressive generation
over a multimodal token sequence and diffusion generation of next-object 3D latents. To generate
the next object, the model uses one autoregressive step to generate the coarse-grained 3D latents in
the scene space, conditioned on both the current seen text instructions and already synthesized 3D
scene. It then uses a second step to generate the 3D latents in the smaller object space, which can
be decoded into fine-grained object geometry and appearance. We curate a large dataset of 230K
indoor scenes with paired text instructions for training. We evaluate 7B 3D-ARD-+ on 50 challenging
scenes, and showcase the model can generate and place objects following non-trivial spatial layout
and semantics prescribed by the text instructions. Code will be released.
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Figure1 We present a 3D Autoregressive Diffusion model 3D-ARD+ to sequentially generate 3D objects from detailed
text instructions, which not only describe the object shape and appearance, but also prescribe complex spatial relations
between objects. 3D-ARD+ model generates a bedroom scene (left: occupancy voxel, right: appearance) precisely
following the text instructions.

1 Introduction

The creation of immersive 3D scenes is crucial in gaming (UKCMA., 2022; Bhat et al., 2025; Hu et al.,
2024; Li et al., 2025), virtual reality (Siddiqui et al., 2024; Zhou et al., 2024a, 2025c¢), and simulation for
embodied AI (Yang et al., 2024¢,b; Nasiriany et al., 2024; Deitke et al., 2022; Szot et al., 2021). This scene
creation process is often interactive, where the user can compose a scene by sequentially adding objects with
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custom geometry, appearance, and spatial arrangement. Conventional workflows (Amirkhanov et al., 2025;
Schonberger et al., 2016) often involve a time-consuming process that requires 3D artists to manually compose
the scene, create detailed object geometry, and set up texture mapping. To reduce manual efforts, various
text-to-scene approaches are proposed to synthesize 3D scenes from text input (Yang et al., 2024c; Li et al.,
2024; Zhou et al., 2024b; Yang et al., 2024a; Bokhovkin et al., 2025; Ling et al., 2025; Zhou et al., 2025b;
Wang et al., 2025b; Yang et al., 2025; Zhu et al., 2025), including models for layout generation (Tang et al.,
2024), and object generation conditioned on layout (Zhang et al., 2024; Hu et al., 2024; Yan et al., 2024; Wu
et al., 2024). However, fewer methods generate both (Vilesov et al., 2023; Fang et al., 2025).

For scene layout generation, earlier methods generate scene layout natively, but are limited to the layout of
large objects only (e.g. sofa) and simple spatial relations, such as 2D layout (Fang et al., 2025) and basic
relations (e.g. a chair next to the table) (Tang et al., 2024; Vilesov et al., 2023). They often do not handle
more complex spatial relations, such as Position the table lamp on the top surface of the right nightstand,
towards its back-right corner (Figure 1). More recent methods (Zhang et al., 2024; Wang et al., 2025b; Zhou
et al., 2025b; Feng et al., 2023; Fu et al., 2024; Yang et al., 2024c; Li et al., 2024; Hong et al., 2025) exploit
LLM (Hurst et al., 2024; Ouyang et al., 2022) to extract scene information from text input and generate a
rough layout, which, however, often deviates from the text description, does not satisfy spatial relations, and
needs further heuristic optimization based on spatial constraints and object interactions (e.g. Scene motif
in (Pun et al., 2025), refinement in AnyHome (Fu et al., 2024)).

To generate objects conditioned on the scene layout, simple methods retrieve 3D assets from external
sources (Tang et al., 2024; Yang et al., 2024b; Ling et al., 2025), which, however, often leads to the final scene
inconsistent with the textual description. Advanced methods distill 3D representation from multi-view 2D
images (Yang et al., 2024a; Zhang et al., 2024; Vilesov et al., 2023) or decode 3D representation from 3D
latent codes generated by diffusion models (Wu et al., 2024; Yan et al., 2024). However, generated objects are
often limited to a predefined set of object categories (Fang et al., 2025; Bokhovkin et al., 2025; Yan et al.,
2024) or lack geometric details compared to text input (Wu et al., 2024).

To support the interactive scene creation with detailed object shape and appearance, we propose a novel 3D
AutoRegressive Diffusion model (3D-ARD+) to natively generate objects with different sizes and non-trivial
spatial arrangement according to the sequential text input. When the text input prescribes fine details about
the shape, appearance, and spatial relations of objects, we show that it is challenging for existing approaches,
while our 3D-ARD+ model performs significantly better. The 3D-ARD+ model processes the text instructions
sequentially. Each text instruction describes the shape, appearance and placement of a new object, and our
3D-ARD+ model autoregressively generates the placement, fine-grained geometry, and appearance of the new
object.

Under the hood, for each text instruction, our model processes the text tokens encoded from all seen text
input, and the 3D latents (Xiang et al., 2025) of the current scene to predict the 3D latents of the next object
in the large scene. A subsequent generation step is used to generate the 3D latents of the new object in the
smaller object space, which can be decoded into fine-grained 3D Gaussians. The newly generated object is
tokenized and appended to the multimodal token sequence to condition the future object generation in an
autoregressive manner. The 3D-ARD+ model adopts the DiT transformer architecture (Peebles and Xie,
2023) with causal attention between text- and 3D tokens, and unrestricted attention between 3D tokens.

To train the 3D-ARD+ model, we curated a proprietary dataset consisting of 230K indoor scenes. We
prompt a public VLM (Comanici et al., 2025) to generate step-by-step text instructions to mimic the scene
creation process. On the evaluation set, which contains 50 sets of text instructions for composing non-trivial
multi-object scenes, we extensively compare our 3D-ARD+ model with several competing methods (Huang
et al., 2025b; Xiang et al., 2025), and validate the 3D-ARD+ model performs significantly better in preserving
the spatial relations and generating object geometry and appearance, even when object scale varies largely.

We summarize our contributions as follows:

e We present a new paradigm of sequential text-to-scene generation and curate an evaluation set of composi-
tional text instructions captioned for 50 indoor scenes.

e We propose a novel 3D AutoRegressive Diffusion model to autoregressively generate the shape, texture, and
placement of the next object conditioned on the already synthesized scene and all seen text instructions.



e We develop a data pipeline to collect a large dataset of 230K indoor scenes with paired text-scene data.

e On our challenging evaluation set, we demonstrate that the 3D-ARD-+ model outperforms other methods
by a large margin in composing multi-object scenes.

2 Related Work

2.1 Text-to-3D Generation

Early Text-to-3D approaches generate 3D objects by distilling 2D diffusion priors (Rombach et al., 2022; Peebles
and Xie, 2023), without any 3D training data, including DreamFusion (Poole et al., 2023), LucidDreamer (Wang
et al., 2023b), and many others (Lin et al., 2023; Wang et al., 2023a; Zhu et al., 2024; Liang et al., 2024).
Multi-view diffusion models (Shi et al., 2024b; Liu et al., 2024; Long et al., 2024) directly generate pose-
consistent image views, which can be used to reconstruct 3D objects. Recent 3D generative models (Nichol
et al., 2022; Jun and Nichol, 2023; Xiang et al., 2025) learn to directly map text to 3D latents or explicit 3D
representations but are not capable of distinguishing individual objects and preserving the spatial arrangement
prescribed in the text. It is still challenging to apply such Text-to-3D approaches to the task of interactive
multi-object scene generation, where the user still needs to manually place the generated individual objects
into the 3D scene.

2.2 3D Indoor Scene Generation

Indoor scene generation approaches often leverage LLMs (Ouyang et al., 2022; Hurst et al., 2024), 2D (Podell
et al., 2023; Rombach et al., 2022), and 3D generative models (Poole et al., 2023; Xiang et al., 2025). While
some are focused on scene layout generation, others focused on generating objects or both.

For scene layout generation, autoregressive (Paschalidou et al., 2021) and diffusion (Tang et al., 2024; Fang
et al., 2025) models are often used to generate a scene code and 3D object attributes. CG3D (Vilesov
et al., 2023) uses a diffusion model for compositional 3D object generation, but is often limited to modeling
simple spatial relations. With the tremendous advances in LLMs, many work exploits them for scene layout
generation (Feng et al., 2023; Zhang et al., 2024; Wang et al., 2025b; Zhou et al., 2025b; Yang et al., 2024c;
Li et al., 2024; Hong et al., 2025; Celen et al., 2024; Ran et al., 2025). Although LLMs improve the scene
diversity, the result is often not well aligned with the text input and requires further optimizations (Yang et al.,
2024c; Celen et al., 2024; Ran et al., 2025). AnyHome (Fu et al., 2024) prompts the LLM to convert the input
text into structured representations, but still rectifies the room layout by Score Distillation Sampling (Poole
et al., 2023). HSM (Pun et al., 2025) uses a VLM to extract room type and objects from the text, but still
needs multiple steps to generate the final layout, such as extracting support region, generating scene motif
and optimizing the room layout. Our 3D-ARD-+ model natively generates the next object conditioned on the
seen text instructions and already generated objects, and thus places the next object in the scene consistent
with the input.

To create 3D objects in the scene, (Tang et al., 2024; Yang et al., 2024b; Ling et al., 2025) retrieve 3D assets
from asset libraries (Deitke et al., 2023b,a), but it lacks coherence to text instruction or between objects.
Instead, recent works generate 3D objects (Yang et al., 2024a; Zhang et al., 2024; Vilesov et al., 2023; Wu
et al., 2024; Yan et al., 2024; Fang et al., 2025; Bokhovkin et al., 2025). BlockFusion (Wu et al., 2024) and
SceneFactor (Bokhovkin et al., 2025) generate 3D objects holistically as a scene, thus lacking geometric details
for individual objects, and requiring further refinement. SceneCraft (Yang et al., 2024a) reconstructs 3D
NeRF representation from multi-view images. CG3D (Vilesov et al., 2023), DreamScene (Li et al., 2024)
generate 3D objects with variants of score distillation sampling (Poole et al., 2023). In contrast, our 3D-ARD+
generates 3D latents, which can be decoded into 3D representation (e.g., 3D Gaussian) of individual objects
in the scene step-by-step, thereby maintaining the fine-grained details and high fidelity.

With the rise of video diffusion models (VDMSs), generating 3D scenes from images or videos has been studied.
ArtiScene (Gu et al., 2025) extracts 3D attributes from isometric scene layouts and generates 3D objects
via image-to-3D model. StarGen (Zhai et al., 2025), HunyuanWorld-Voyager (Huang et al., 2025a) propose
long-range, pose-controllable VDMs whose frames can be turned into 3D Gaussian splats. However, these
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Figure 2 Overview of 3D-ARD model for coarse-grained scene generation. Left: at training time, the model takes text
tokens, 3D understanding tokens, and noised 3D generation tokens as input, and predicts a time-dependent noise.
Right: at inference time, the model iteratively transforms a random noise into 3D latents, which can be decoded by 3D
VAE decoder and 3D Gaussian (3DGS) decoder to generate a 3D object.

two-stage approaches are susceptible to error accumulation, and the quality of 3D reconstruction is limited by
the fidelity of the intermediate images or videos.

2.3 Multimodal Generative Models

Since the success of visual generation models based on the text prompt (Ramesh et al., 2021; Saharia et al.,
2022; Rombach et al., 2022; Dai et al., 2023), it has been studied to generate visual contents beyond the text
input, such as reference images. Earlier work focused on building a specialized model for each set of reference
images (Gal et al., 2023; Ruiz et al., 2023). However, such approachs are expensive and limited to making
reference to only a few concepts.

Following the success of LLMs, multimodal generative models are introduced (Hurst et al., 2024; Comanici
et al., 2025; Zhou et al., 2025a; Team, 2024; Shi et al., 2024a; Chen et al., 2025; Xie et al., 2025; Pan et al.,
2025; Wang et al., 2025a; Wu et al., 2025a; Deng et al., 2025). Compared to earlier works based on fine-tuning,
multimodal generative models are fast and flexible, as it takes multimodal inputs (e.g. reference image) in an
in-context manner to generate multimodal outputs. Chameleon (Team, 2024), ILLUME (Wang et al., 2025a),
MUSE-VL (Xie et al., 2025), and Janus-family (Wu et al., 2025a; Chen et al., 2025) employ a discrete image
tokenizer so that both text and vision modalities can be modeled using a single autoregressive transformer. On
the other hand, Transfusion (Zhou et al., 2025a), LMfusion (Shi et al., 2024a), MetaQuery (Pan et al., 2025)
and Bagel (Deng et al., 2025) develop models by combining the best of both worlds, where the discrete (e.g.
text) token is processed using next-token prediction, while the continous (e.g. image) token is processed via
diffusion. The proposed 3D-ARD- is inspired by latter that combines next-token prediction and diffusion for
multimodal generation, but is designed to generate 3D representation directly from our autoregressive-diffusion
model.

3 Method

We tackle the task of sequential text-to-scene generation, and the goal is to generate individual objects in
a multi-step process based on sequential text instructions, which often prescribes the shape, appearance,
functional use and spatial arrangement of the new object at each step. We do not generate walls, floors and
ceilings since they can be easily generated by prior methods (Raistrick et al., 2024; Yang et al., 2024¢; Fu
et al., 2024; Pun et al., 2025).

We propose a novel 3D Autoregressive Diffusion model 3D-ARD for coarse-grained scene generation (Figure 2),
and further extend it into a 3D-ARD+ model for fine-grained scene generation (Figure 5). Both are trained
using a diffusion objective (Liu et al., 2023). We address three key challenges below. 1): How to build a
model to generate the next object with coarse shape and appearance conditioned on the text input and the
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Figure 3 An example of step-by-step generation. Our 3D-ARD+ model closely follows the text instructions and add a
total of 8 stacks of books to different compartments in a bookshelf.

already synthesized 3D scene (if any)? In Section 3.1, we present the 3D-ARD model architecture. 2): How to
generate objects with fine geometric details and appearance when the object size varies and the scene is often
much larger? In Section 3.2, we present an extended 3D-ARD+ model for refining the object geometry using
extra refinement steps. 3) The lack of training data with paired scene and sequential text input. In Section 3.3,
we introduce our data pipeline to curate a large-scale indoor scene dataset with paired text instructions.

3.1 3D-ARD: Autoregressive 3D Diffusion

We denote the sequential text instructions as {7;}}¥.; where N is the total steps. The text instruction T}
for generating the next object often not only describes the shape and appearance of the object, but also its
spatial arrangement. An example from Figure 1 is “Position the light-blue table lamp on the top surface of the
right nightstand, towards its back-right corner.” Therefore, the next-object generation should be conditioned
on all seen text instructions and the already synthetized 3D objects (if any). Inspired by Transfusion (Zhou
et al., 2025a), we build a multi-modal transformer model that simultaneously processes text tokens X/, 3D
understanding tokens X and 3D generation tokens X at each step t.

Texttokens. We tokenize the text string T} into a sequence of discrete tokens with the BAGEL tokenizer (Deng
et al., 2025), and use standard embedding layers to convert tokens into vectors Embed(7}) of dimension C.
At each step, we concatenate text tokens of all seen text instructions to obtain X/ .

3D understanding tokens. At training time, for each of the existing objects {Otr}i,;ll in the step ¢, we take a
3D binary volume Vi € {0, 1}M*M>M 'which represents the occupancy of object Oy in the whole scene, and
use a VAE encoder to encode it into low-resolution 3D latents Sy € RP*P*DPxCs Tq reduce the number of
tokens, we process Sy using a patchification layer with non-overlapping patches of size 2, followed by a linear
projection layer to align with the text embedding dimension C. The 3D understanding tokens X include
tokens of all existing objects.

3Dgenerationtokens. Inspired by TRELLIS (Xiang et al., 2025), the occupany of an object in the scene can be
represented by a list of active voxels {p;}X_,, where p; is the position index of a voxel, and L the total number
of active voxels. The sparse voxels {p;}Z , are converted into a dense binary 3D volume V € {0, 1}M>MxM
which is further encoded by a 3D VAE encoder into low-resolution 3D latents S € RP*P*DPxCs  During
model training, we obtain the 3D generation tokens in the current step by linearly projecting a noised version
of S into X. Note the generation tokens will be later denoised and decoded to predict the occupancy of next
object in the scene.

3.1.1 Training Recipe

We train the 3D-ARD model on a curated training dataset (Section 3.3) with paired scene and sequential text
instructions. Over the generation steps {t}, we autoregressively predict the denoised 3D latents of individual
objects, which can be decoded into a 3D occupancy volume V in the scene. Unlike Transfusion (Zhou
et al., 2025a), which predicts both text token and image patches and thus applies objectives on all output
tokens, our goal is to generate the next object in the scene. Therefore, we apply diffusion objective to the



denoised 3D generation tokens only. Specifically, we model the 3D latents distribution using the Rectified flow
model (Liu et al., 2023), where in the forward pass a noised sample is obtained based on a time-dependent
linear interpolation (s) = (1 — s)x + se between a sample « and a random noise €. In the backward pass,
the noised sample is denoised according to a time-dependent flow v(x, s) = V(z), which is approximated by
the transformer backbone trained with the conditional flow matching objective below.

L(0) = Es.zg.ellve(x, s) — (e — o) |3 (1)

where 6 denotes the learnable parameters.

3.1.2 Transformer Backbone

The majority of the 3D-ARD model’s parameters 6 are with the multimodal transformer backbone, which
consists of 28 blocks with self-attention (Peebles and Xie, 2023). To explicitly reveal different types of tokens
in the sequence, we insert BOS and EOS tokens to denote the beginning and end of text tokens. Similarly, we
insert BO3D and EO3D tokens for 3D understanding and generation tokens.

3D-ARD Transformer attention. We implement a generalized causal attention between three types of input
tokens (Figure 4). For text tokens, it uses standard causal attention, including attention to the text tokens
and 3D understanding tokens from earlier steps.

For 3D understanding tokens, it uses the standard

causal attention to text tokens, but unrestricted Text
attention to themselves, allowing every understand- 3D Generation
ing token to attend to every other understanding 3D Understanding

token in the scene. For 3D generation tokens, it
uses a standard causal attention to text and 3D
understanding tokens, since the generation of next
object should be conditioned on all seen text and al-
ready synthesized objects. They have unrestricted
attention to themselves, allowing every generation
token to attend to every other generation token.

3.1.3 Model Inference

At inference time, for each text instruction T;, we
first samp]e a random noise € as 33(1)7 and itera- Figure 4 The generalized causal attention used by 3D-ARD
tively follow the approximate flow vy (33’ 3)’ condi- model. Tokens along the horizontal and vertical directions
tioned on all past text tokens and 3D understanding ~ are input and output tokens, respectively.

tokens, to update the sample @(s) until we obtain

a denoised sample x(0). We decode «(0) into a

binary volume V via a 3D VAE decoder to denote the occupancy of the object in the scene. To obtain the
geometry and appearance of the final object, we extract the active voxels {p;}~_; from V, iteratively denoise
a randomly initialized noise by running the off-the-shelve TRELLIS 3D VAE decoder based on sparse flow
transformer (Xiang et al., 2025) conditioned on the current object text description to obtain the structured
latent 2z = {(2;, p;)}X,, which can be decoded into 3D Gaussians using the TRELLIS 3DGS decoder (See
Figure 1).

3.2 3D-ARD+: Fine-grained Scene Generation

Due to computational constraints, the resolution of the generated object in the scene space V € {0, 1}M>M>xM

is limited (M =64 in our experiments), resulting in only coarse-grained object geometry for common objects
(Figure 7 Top). To address this limitation, we extend the 3D-ARD model by adding an extra step to generate
3D latents of the same resolution DxDx D in the smaller object space after each current generation step, and
the resulting model is referred to as 3D-ARD+ model. It uses a generation process of 2N steps for sequential
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Figure 5 Fine-grained object generation in 3D-ARD+ model. 3D-ARD+ model generates 3D latents in the object space to
obtain more fine-grained geometry.

text instructions {7;}., (Figure 5). Below, we present details on how to prepare tokens at even steps {2t},
where fine-grained objects are generated.

Texttokens. At an even step 2¢, we take text tokens of the instruction 7} already prepared at the step 2t — 1,
as well as two new special tokens BOR and EOR, which denote the beginning and end of refinement text, as
the text tokens at the step 2t.

3D understanding tokens. At an even step 2t¢, we first prepare 3D understanding tokens from all past odd
steps {2¢' — 1}%,_, as in section 3.1. For all past even steps {Qt’}i,_:ll, we take the groundtruth dense binary
3D volume V5 in the object space, and use a 3D VAE encoder to encode it into a low-resolution 3D latents
Sop . Similar to section 3.1, latents Sy are further patchified and linearly projected to reduce the token

numbers and align the feature dimension.

3D generation tokens. To prepare 3D generation tokens, we take the groundtruth binary occupancy volume V'
in the object space, encode it into low-resolution 3D latents S via a 3D VAE encoder, and apply the Rectified
Flow time-dependent interpolation to obtain a noisy sample. As in Section 3.1.1, we further linearly project it
to obtain 3D generation tokens.

Model training. 3D-ARD+ model at both odd and even generation steps also attaches the conditional flow
matching objective (Equation 1) to the denoised 3D generation tokens to train the transformer backbone.

Modelinference. Similarly to the inference of the 3D-ARD model in Section 3.1.3, the 3D latents generated in
the local object space are decoded into a binary occupancy volume V', where the active voxels with normalized
coordinates are extracted to be used by the TRELLIS 3D VAE based on sparse flow transformer to generate
structured latents z = {(z;,p:)}2 ;. To put the fine occupancy volume in the scene space, we first calculate
the bounding box of the coarse one and then transform the fine one accordingly.

3.3 Dataset Construction

To enable sequential scene generation, we construct a high-quality indoor dataset with step-wise assembly
instructions. The raw data is from a proprietary indoor dataset, which consists of parts of a scene but lacks of
assembling instructions. To generate the instructions, our data pipeline consists of four main stages (Figure 6).

#1Viewselection. Given multi-view renderings of each object group, we leverage a public VLM API (Comanici
et al., 2025) to identify the canonical front view that maximizes visual informativeness while minimizing
occlusion. The model analyzes specific cues such as furniture orientation (e.g. cabinet doors, bed headboards)
to determine the optimal viewing angle for subsequent labeling.
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Figure 6 Dataset construction pipeline includes four steps: (1) Front
view selection, (2) Captioning, (3) Spatial reasoning, and (4)
Generating assembly plan.

4 Experiments

4.1 Implementation Details

We implement our approach in PyTorch (Paszke et al., 2019). We use the dense binary occupancy volume
V € {0, 1} M*MxM with resolution M =64 to represent the occurrence of objects in the scene space or the
smaller object space. An off-the-shelve 3D VAE from TRELLIS (Xiang et al., 2025) is used to encode V
into a low-resolution continuous volume S € RP*P*PxCs where D = 16 and Cg = 8. All text tokens, 3D
understanding tokens, and 3D generation tokens use the feature dimension 128.

3D-ARD+ model training. We use pre-trained multimodal transformer model from Bagel (Deng et al., 2025),
which contains 7B active parameters and 28 self-attention building blocks. We finetune it on our curated
indoor data for 120K steps with learning rate le — 4 using 128 Nvidia H100 GPUs for a week. The maximum
token size per sequence is 20,480.

3D-ARD+ model inference. KV pairs of text tokens for all seen text instructions are stored in the KV
cache (Pope et al., 2022). KV pairs of denoised 3D generation tokens are also stored. We utilize the Euler
sampler for generation, employing 50 sampling steps. The CFG coefficient (Ho and Salimans, 2022) is set to 4
for text conditions and 2 for 3D condition tokens.

Indoor training data. Our dataset consists of 230K indoor scenes from typical room types (bedrooms, living
rooms, kitchens, dining areas, bathrooms). Each scene contains 2-15 parts with diverse compositions: adjacent
furniture (e.g. bed with nightstands), furniture-object assemblies (e.g. table with tableware), or grouped small
objects. Each scene is normalized together to be within the unit bounding box. Each part has a corresponding
assembly instruction (several to 40 words) describing its spatial placement.



3D-ARD
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Figure 7 Comparing results from 3D-ARD and 3D-ARD+ models. Top: coarse-grained; Bottom: fine-grained.

4.2 Evaluation Settings

Our evaluation set consists of sequential text instructions captioned by a public VLM API (Comanici et al.,
2025), as detailed in Section 3.3. See examples in the appendix.

4.2.1 Evaluation dataset

We select 50 unique and challenging scenes from the curated dataset for evaluation. These scenes span diverse
room types (e.g. kitchen, bedroom, living room), varying spatial scales (from groups of large furnitures
to groups of small objects), and different object counts, ensuring comprehensive coverage of compositional
complexity and spatial reasoning challenges.

4.2.2 Baselines

We consider the following four baselines.

TRELLIS-text XL. is the largest Text-to-3D model TRELLIS (Xiang et al., 2025) open-sourced with 2B
parameters. To prepare the text input, we use a public VML API (Comanici et al., 2025) to summarize all
steps into one instruction.

MIDI: Multi-Instance Diffusion. is a recent image-to-scene model to generate multi-object scenes by segmenting
the scene image using Grounded-SAM (Ren and et al., 2024), and applying a multi-instance diffusion
model (Huang et al., 2025b). To prepare the image input, we summarize all text instructions into an overall
description of the scene, and use a public text-to-image API (Comanici et al., 2025) to generate a scene image.

BB.+TRELLIS. We reuse the 3D bounding boxes in the test set. Then we use the TRELLIS-text XL model
to generate 3D objects from object captions, and fit the generated object to the bounding box afterwards.

LLM-layout+TRELLIS. In this baseline, we first use the text instructions to prompt a public LLM API for
generating detailed object captions and predicting 3D bounding boxes. Then we use the TRELLIS-text XL
model to generate actual 3D objects from those captions, rescale and position each mesh to fit its bounding
box.



Input GT. Condition GT. Appearance Generation Final Scene Generation

2) Position the long dining bench directly behind and aligned with the longer side of the rectangular dining table. It stands on the
floor and provides seating along one side of the table. 3) Place the modern dining armchair with a black upholstered bucket seat in
front of the rectangular dining table... 4) Place the modern dining armchair with a light blue upholstered bucket seat in front of the
rectangular dining table ...

2) Position the flat-screen computer monitor on the top surface of the main segment of the L-shaped desk, centering it against the
back cubicle panel for optimal viewing. 3) Place the ergonomic office chair directly in front of the main desk surface of the L-
shaped workstation, ensuring it is centrally aligned for comfortable user access and mobility within the workspace.

Figure 8 Conditioned next-object generation. Given the ground-truth foundamental object (table or desk) and
subsequent textual instructions, our model generates subsequent objects properly.

4.3 Qualitative Results

3D-ARD+ sequential generation results. As shown in Figure 3, 3D-ARD+ closely follows text instructions at
each step, and can generate object geometry and appearance close to the text instructions while also placing
the object based on the prescribed spatial arrangement.

Comparing 3D-ARD and 3D-ARD+ models. In Figure 7, we show 3D-ARD+ generates more fine-grained objects
with the designed extra refinement step in the left example. The top right example shows that generating
appearance directly on coarse geometry will be likely to cause artifacts in the resulting texture.

Comparisons with baselines. In Figure 10, we qualitatively compare our 3D-ARD+ model with four baselines
as our primiary evaluation. TRELLIS-text XL will hallucinate unrelated objects (e.g. paper towel in row
#1) or generate objects inconsistent with the text input (e.g. more than expected pillows in row #2). MIDI
requires an image aligned with the text as the input. We empirically observe that when images generated
from text instructions by a public VLM API (Comanici et al., 2025) are used as input, MIDI may still fail to
produce plausible object shapes and placements. See more details in the supplementary. For BB.+TRFELLIS,
it is difficult to avoid object collision after placing individual objects, generated by TRELLIS-text XL, into
the scene according to the groundtruth bounding box (e.g. row #3). For LLM-layout+TRELLIS, LLM can
predict 3D bounding box of individual objects poorly for complex text input (e.g. row #1, #3). Even the
subsequent generation of individual objects by TRELLIS-text XL are plausible, the spatial arrangement in
the composed scene still significantly deviates from the text instructions. In contrast, our method successfully
captures object types, shapes, appearance, and their spatial locations as specified in the text instructions,
resulting in meaningful compositional 3D generation.

Conditioned Next-Object Generation Our model supports conditioned generation where the first object is fixed
and subsequent objects are generated based on varying text prompts. Figure 8 demonstrates this capability.

Diversity of Generation To demonstrate the generative diversity of our model, we provide multiple generations
with different random seeds from identical text instructions. Figure 9 shows that given the same prompt, our
model produces varied yet semantically consistent results.
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Sample 1 Sample 2 Sample 3

1) Mount the wall-mounted decorative shelf as the primary
and foundational structure of the scene, ensuring it is level to
support subsequent items. This shelf provides the flat display
surface for other objects and implicitly includes the central
picture frame. 2) Place the decorative potted plant with vibrant
green leaves and a white pot onto the flat display surface of
the shelf, positioning it specifically on the left side, to the left
of where the picture frame is located. 3) Place the second
decorative potted plant with vibrant green leaves and a white
pot onto the flat display surface of the shelf, positioning it
specifically on the right side, to the right of where the picture
frame is located, mirroring the first plant.

1) Place the dark brown or black nightstand as the
foundational element of the scene, providing a stable top
surface that will support the lamp. 2) Position the white
ceramic table lamp centrally on the top surface of the
nightstand, ensuring it is stable and ready to provide
illumination.

1) Place the stylish armchair as the central and foundational
element of the scene, providing the main seating surface and
supporting all other items. 2) Position the soft, light grey
square cushion onto the seating area of the armchair, resting
against its backrest to provide comfort. 3) Drape the black and
white houndstooth patterned throw blanket over the left
armrest of the armchair, with a portion folded onto the seat, to
serve as a decorative accent.

Figure 9 Diversity of generation results. Three samples are generated for each sequence of text instructions, illustrating
the variations of output produced by our method. The first-row results are generated via conditioning on the ground-
truth geometry of the base object. Results in the second and third rows are generated from scratch.

4.4 Quantitative Comparisons

Evaluation metrics. We conduct the evaluation of 3D generation on their rendered images. Following previous
work (Xiang et al., 2025), we employ kernel distance metrics, including Kernel Inception Distance (KID)
(Binikowski et al., 2018) using InceptionV3, and Kernel Distance with DINOv2 (KDD) encoders. For each
scene in our training set, we randomly render images from the front, left, right, and back views to construct the
reference batch. Similarly, we render these four views for each baseline in the test set to form the generation
batch. To measure the consistency between text descriptions and generated scenes, we use CLIP scores,
comparing both text and image references. To obtain a single reference text description (rather than a list of
instructions) and image for each scene, we first input the textual instructions into a public VLM (Comanici
et al., 2025) to generate the corresponding images. We then query it to describe these generated images, using
the resulting descriptions as reference text prompts.

Results. We present our quantitative results in Table 1 as a secondary evaluation. Our method consistently
outperforms all baseline approaches across every metric, aligning with our visual comparison. These findings
offer numerical validation of our model’s effectiveness, demonstrating superior overall generation quality and
enhanced consistency with text descriptions.

5 Limitations and Future Work

While our proposed method demonstrates promising results in language-conditioned 3D scene generation,
we acknowledge two main limitations that present opportunities for future research. 1. Despite our explicit
spatial condition, the generated layouts are not always perfect. Specifically, overlapping or gaps between two
adjacent objects are not always resolved correctly. While our assembly plan provides sequential placement

11



Table 1 Quantitative comparisons on the indoor evaluation set. We report several metrics, including Kernel Dis-
tance (Binkowski et al., 2018) with Inception-v3 (KID) and DINOv2 encoders, CLIP-text, and CLIP-image scores (Rad-
ford et al., 2021).

KID () KDD ({) CLIP-text (1) CLIP-image (1)

MIDI 1.308 98.721 22.607 74.896
TRELLIS-text XL 1.543 96.928 22.086 73.306
BB.+TRELLIS 1.694 101.287 20.726 66.555
LLM-layout+TRELLIS 1.376 88.425 22.645 71.896
Ours 1.244 49.021 27.447 76.103

instructions and relative spatial relationships, the spatial condition representation (VAE tokens) may lack
sufficient granularity to precisely encode fine-grained spatial positioning. Instead of relying solely on VAE
tokens, we can explore more fine-grained encoding by focuing only on surface area in a higher resolution,
or use other more elaborated encoders Wu et al. (2025b) that shows better spatial understanding accuracy.
2. The size of the first placed object (foundational element) might be too large relative to the intended
scene bounds, leaving insufficient space to accommodate subsequent objects according to the assembly plan.
This can lead to spatial constraint violations. To alleviate this, we can design an adaptive scene generation
framework where the available spatial bounds adjust dynamically based on the scale of all objects generated
up to now. This would enable the model to allocate appropriate space before putting the next object.

6 Conclusion

We present a novel Autoregressive 3D Diffusion model 3D-ARD+ for compositional text-to-3D generation. A
large-scale indoor scene dataset with paired text instructions is curated to train the 3D-ARD+ model. On a
challenging evaluation set of 50 text instruction sets, the proposed 3D-ARD- model significantly outperforms
other competing methods in both visual inspection and quantitative evaluations.
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Text Instructions Reference Image MIDI BB. + TRELLIS LLM Layout TRELLIS-text Ours
(by a Public VLM) + TRELLIS XL

1) Place the two-tiered, corner shower caddy
as the foundational support structure... 2)
Place the small, round bottle on the front-left
side of the lower shelf of the shower caddy. 3)
Place the small, cylindrical bottle on the
back-right side of the lower shelf of the
shower caddy... 4) Place the tall, cylindrical
bottle on the left-front side of the upper shelf
of the shower caddy. 5)... 6)...

1) Place the lavish three-seater sofa as the
foundational element of the scene... 2)
Position the rectangular decorative throw
pillow with an ornate, swirling abstract
pattern ... 3) Place ... throw pillow ... on the
sofa's seat ... 4) Place the second square
decorative throw pillow with a central
embroidered floral pattern on the sofa's seat...

5) ... pillow ... on the far right section of the
sofa's seat...

(1) Place the light wood-toned rectangular
desk unit as the foundational base... 2) Attach
the light wood-toned open shelving unit onto
the left side of the desk unit's tabletop... 3)
Insert the flat, rectangular dark gray panel
into the right section ... positioning it directly
on the desk ...adjacent to the open shelving...

1) Place the rectangular nightstand ... as the
foundational furniture piece, providing the
main surface for other items. 2) Place the
table lamp ... on the top surface of the
nightstand... 3) Position the rectangular photo
frame on the top surface ...between the lamp
and where the plant will be placed. 4) Place
the decorative potted plant with lush green
leaves ... on the top surface of the nightstand.
... adjacent to the photo frame.

1) Place the modern side table featuring a
round, tray-like silver metal top and a
minimalistic wire metal base as the central
and foundational element of the scene,
providing the primary surface for other items.
2) Position the rectangular book ... on the top
surface of the side table, to the left of the
center. 3) Place the rectangular book ... on the
top of the first book...

1) Place the minimalist rectangular bench
with its white upholstered top and slim white
metal legs ... green fabric runner, which is
draped over its right section.... 2) Place the
first decorative book ... onto the green fabric
runner on the right side of the bench. .. serve
as the base for the next stacked item. 3) Stack
the second decorative book ... directly on top
of the first decorative book...

1) Place the dark brown wooden media
console... 2) Position the modern flat-screen
television on the broad top surface of the dark
brown wooden media console, ... 3) Place ...
books horizontally on the lower left open
shelf ..., to the left of the television bay. 4)
Place ... books horizontally on the lower right
open shelf ..., to the right of the television bay.
5) Arrange ... books vertically on an upper
open display shelf of ... entertainment unit

Figure 10 Qualitative comparison. Visual results of our method and existing single-object generation and multi-object
generation approaches are presented with corresponding input text instructions and reference images generated by a
public VLM API (Comanici et al., 2025). Bold text highlights object kinds, italic text shape/appearance descriptions,
and underline locations.
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Text Instructions Reference Image

(by a Public VLM)

1) Place the classic white bathroom vanity
unit... This unit provides the integrated sink
and faucet... 2) Mount the rectangular
bathroom mirror with a thick, classic white
frame centrally on the wall, directly above the

vanity unit... 3) Place the potted plant on the o 4 3

left side of the vanity unit... 4) Position the
tall, cylindrical two-toned bottle or jar on the
right side of ... the vanity unit... 5) Place the
small ... container on the right side...

1) Place the L-shaped modular sectional sofa
as ... seating element... 2) Position the
rectangular coffee table centrally in front of
the main seating section of the L-shaped
modular sectional sofa... 3) Place the modern
upholstered armchair to the left of the
rectangular coffee table and diagonally to the
front-left of the L-shaped modular sectional
sofa... 4) Arrange the collection of assorted
square throw pillows on the seat...

1) Place the rectangular console table as the
central and foundational element of the
scene... 2) Position the upright, spiky green
plant in ... pot on the far left side... 3) Place
the lush green leafy plantin ... pot on the top
surface... to the right of the spiky green plant.
4) Place ...brown, bare tree branches in its
light grey vase on the top surface... 5) Position
the modern table lamp... 6) Place the tall,
rectangular mirror on the top surface ...

MIDI

1) Place the dark brown wooden vanity desk
as the central and foundational element of the
scene... 2) Mount the round wall mirror
centrally on the wall above the vanity desk...
3) Position the classic dark wood chair
directly in front of the central opening of the
vanity desk... 4) Place the table lamp with a
rectangular white shade on the top surface...
5) Arrange the set of two overlapping photo

FAILED

frames on the top surface ...

1) Place the sturdy square side table made of
dark wood as the central and foundational
element of the scene, providing a stable
surface that will support other objects. 2)
Position the small green plant in a textured,
light grey, organic-shaped pot on the top
surface of the square side table... 3) Place the
stack of decorative books on the top surface of
the square side table...

1) Place the white bedside nightstand as the
central and foundational element of the scene...
2) Position the decorative table lamp centrally
on the top surface of the nightstand... 3) Place
the open book on the top surface of the
nightstand, positioned towards the front-left
from the viewer's perspective, to complement
the scene as a decorative element.

1) Place the light-toned rectangular coffee table

..., providing both a top display surface and a

lower storage shelf ... 2) Position the stack ... R
books... 3) Place the stack of five light-colored
books with the top book... 4) Arrange the stack
of dark-covered books... on the lower shelf of
the coffee table... 5) ... 6) Position the
decorative floral arrangement ... on the top
surface of the coffee table... 7) Arrange the
collection of decorative tabletop items...

Figure 11 Additional qualitative comparison results. We present additional visual results comparing our method with
baseline approaches. Grey boxes labeled "FAILED" indicate that the corresponding baseline methods are unable to

produce any output.
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